How To Play Stack Em

broken image


Expert-Level Artificial Intelligence in Heads-Up No-Limit Poker

  1. How To Play Stock Market Options
  2. How To Play Stick Empires With Flash Dead
  • LEARN to play in 1 second! DISCOVER new levels every week! Stack them up and Kick em!
  • Texas Holdem poker tournaments might be the greatest innovation in poker in the past half-century. With a small (and pre-determined) investment poker players can experience the unique thrill of running deep, stacking up chips and ultimately playing for both a life-changing payday and the title of sole survivor.

Links

Whether you prefer Hold'em or Omaha, big stacks or small, Turbos or extended blind levels, there will be something on the menu for you. And you can play up to 20 tournament tables at the same time when you play at Ignition, giving you the opportunity to build your bankroll.

Play

Twitch | YouTube | Twitter
Downloads & Videos | Media Contact

DeepStack bridges the gap between AI techniques for games of perfect information—like checkers, chess and Go—with ones for imperfect information games–like poker–to reason while it plays using 'intuition' honed through deep learning to reassess its strategy with each decision.

How To Play Stack Em

Twitch | YouTube | Twitter
Downloads & Videos | Media Contact

DeepStack bridges the gap between AI techniques for games of perfect information—like checkers, chess and Go—with ones for imperfect information games–like poker–to reason while it plays using 'intuition' honed through deep learning to reassess its strategy with each decision.

With a study completed in December 2016 and published in Science in March 2017, DeepStack became the first AI capable of beating professional poker players at heads-up no-limit Texas hold'em poker.

DeepStack computes a strategy based on the current state of the game for only the remainder of the hand, not maintaining one for the full game, which leads to lower overall exploitability.

DeepStack avoids reasoning about the full remaining game by substituting computation beyond a certain depth with a fast-approximate estimate. Automatically trained with deep learning, DeepStack's 'intuition' gives a gut feeling of the value of holding any cards in any situation.

DeepStack considers a reduced number of actions, allowing it to play at conventional human speeds. The system re-solves games in under five seconds using a simple gaming laptop with an Nvidia GPU.

The first computer program to outplay human professionals at heads-up no-limit Hold'em poker

In a study completed December 2016 and involving 44,000 hands of poker, DeepStack defeated 11 professional poker players with only one outside the margin of statistical significance. Over all games played, DeepStack won 49 big blinds/100 (always folding would only lose 75 bb/100), over four standard deviations from zero, making it the first computer program to beat professional poker players in heads-up no-limit Texas hold'em poker.

Games are serious business

Don't let the name fool you, 'games' of imperfect information provide a general mathematical model that describes how decision-makers interact. AI research has a long history of using parlour games to study these models, but attention has been focused primarily on perfect information games, like checkers, chess or go. Poker is the quintessential game of imperfect information, where you and your opponent hold information that each other doesn't have (your cards).

Until now, competitive AI approaches in imperfect information games have typically reasoned about the entire game, producing a complete strategy prior to play. However, to make this approach feasible in heads-up no-limit Texas hold'em—a game with vastly more unique situations than there are atoms in the universe—a simplified abstraction of the game is often needed.

A fundamentally different approach

DeepStack is the first theoretically sound application of heuristic search methods—which have been famously successful in games like checkers, chess, and Go—to imperfect information games.

At the heart of DeepStack is continual re-solving, a sound local strategy computation that only considers situations as they arise during play. This lets DeepStack avoid computing a complete strategy in advance, skirting the need for explicit abstraction.

Nfl prop bets 2017 nfl. During re-solving, DeepStack doesn't need to reason about the entire remainder of the game because it substitutes computation beyond a certain depth with a fast approximate estimate, DeepStack's 'intuition' – a gut feeling of the value of holding any possible private cards in any possible poker situation.

Finally, DeepStack's intuition, much like human intuition, needs to be trained. We train it with deep learning using examples generated from random poker situations.

DeepStack is theoretically sound, produces strategies substantially more difficult to exploit than abstraction-based techniques and defeats professional poker players at heads-up no-limit poker with statistical significance.

Download

Paper & Supplements

Hand Histories

Members (Front-back)

Michael Bowling, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, Viliam Lisý, Martin Schmid, Matej Moravčík, Neil Burch

How To Play Stock Market Options

low-variance Evaluation

The performance of DeepStack and its opponents was evaluated using AIVAT, a provably unbiased low-variance technique based on carefully constructed control variates. Thanks to this technique, which gives an unbiased performance estimate with 85% reduction in standard deviation, we can show statistical significance in matches with as few as 3,000 games.

Abstraction-based Approaches

Despite using ideas from abstraction, DeepStack is fundamentally different from abstraction-based approaches, which compute and store a strategy prior to play. While DeepStack restricts the number of actions in its lookahead trees, it has no need for explicit abstraction as each re-solve starts from the actual public state, meaning DeepStack always perfectly understands the current situation.

How To Play Stick Empires With Flash Dead

Professional Matches

We evaluated DeepStack by playing it against a pool of professional poker players recruited by the International Federation of Poker. 44,852 games were played by 33 players from 17 countries. Eleven players completed the requested 3,000 games with DeepStack beating all but one by a statistically-significant margin. Over all games played, DeepStack outperformed players by over four standard deviations from zero.


Heuristic Search

At a conceptual level, DeepStack's continual re-solving, 'intuitive' local search and sparse lookahead trees describe heuristic search, which is responsible for many AI successes in perfect information games. Until DeepStack, no theoretically sound application of heuristic search was known in imperfect information games.

','resolveObject':','resolvedBy':'manual','resolved':true}'>
','resolvedBy':'manual','resolved':true}'>
','resolveObject':','resolvedBy':'manual','resolved':true}'>




broken image